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Figure 1: An annotation made on a 6500 x 3000 pixel aerial image of flooding caused by Hurricane Matthew using only ten clicks of
our topological segmentation tool. Pixels overlaid with blue have been labeled as dry and red as flooded. Note that areas labeled
as flooded can appear green on the left, this is due to the tree canopy obscuring the flooded ground beneath. This tool guides
annotation using the corresponding elevation data for a region, resulting in accurate labels. This can be seen by the highlighted
areas where the tool annotated flooding around small dry features, but left them unlabeled. In our experimental user study, we show
that this tool is more efficient than the state-of-the-art elevation-guided tool and can be used effectively by untrained participants.

ABSTRACT

Mapping the extent of flood events is a necessary and important as-
pect of disaster management. In recent years, deep learning methods
have evolved as an effective tool to quickly label high-resolution im-
agery and provide necessary flood extent mappings. These methods,
though, require large amounts of annotated training data to create
models that are accurate and robust to new flooded imagery. In this
work, we present FloodTrace, a web-based application that enables
effective crowdsourcing of flooded region annotation for machine
learning applications. To create this application, we conducted ex-
tensive interviews with domain experts to produce a set of formal
requirements. Our work brings topological segmentation tools to
the web and greatly improves annotation efficiency compared to
the state-of-the-art. The user-friendliness of our solution allows re-
searchers to outsource annotations to non-experts and utilize them to
produce training data with equal quality to fully expert-labeled data.
We conducted a user study to confirm our application’s effective-
ness in which 266 graduate students annotated high-resolution aerial
imagery from Hurricane Matthew in North Carolina. Experimental
results show the efficiency benefits of our application for untrained
users, with median annotation time less than half the state-of-the-art
annotation method. In addition, using our application’s aggrega-
tion and correction framework, flood detection models trained on
crowdsourced annotations were able to achieve performance equal to
models trained on fully expert-labeled annotations, while requiring
a fraction of the expert’s time.
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1 INTRODUCTION

In recent years, the societal impact of flooding has been difficult
to ignore, with the severity and frequency of flood events increas-
ing year after year [22]. In response, mapping the extent of these
floods has become a crucial tool in a multitude of domains, from
disaster response and insurance risk assessment to urban planning
and agriculture.

As flood extent mapping continues to grow in importance, the
amount of data being gathered on flooded regions has also grown,
with it now being unfeasible to expect manual labeling of flood
extent to meet necessary demand. To address this, it has become
common for much smaller amounts of labeled data to be used to
train classification models which can then quickly perform this
task on new data as it is collected. Many classification models
based on deep learning techniques have shown effectiveness for
flood extent mapping by utilizing satellite imagery, unmanned aerial
vehicle (UAV) data, hydrographs, and digital elevation model (DEM)
data [4].

Although these models greatly reduce the area of flooded regions
that need to be manually labeled, they still require annotated train-
ing sets to effectively learn from. High accuracy within training
sets is paramount to allow dependent models to correctly learn and
predict flooding. Producing these annotations requires a huge time
commitment for domain scientists, which becomes prohibitive for
creating the large, varied datasets necessary to train models that
can reliably respond to unseen flooded imagery. While fully expert-
labeled training data is the standard, crowdsourcing offers a powerful
way to gather annotated datasets, and has been shown before as a
valuable tool for emergency response [23,28] and mapping floods
specifically [13,42,59].

In this domain, annotation consists of assigning categories (such
as flooded or dry) to the pixels of an image, usually through di-
rectly applying color. Existing flood annotation datasets are most
commonly created by manual labeling of aerial imagery with sim-
ple brushes and polygon selection tools, which is extremely time-
consuming. Semi-automatic approaches improve a user’s produc-
tivity by allowing them to label larger areas more quickly with the
assistance of a guiding algorithm. Semi-automatic tools have been
used previously to create flood annotation datasets [9, 26,42, 51]



through various algorithms on the imagery being labeled. While
these tools can improve efficiency, our work builds on insight from
domain experts which motivates a focus on elevation-guided anno-
tation of flooded regions. Recently, elevation guided methods have
become more common, where satellite imagery is supplemented
with a corresponding elevation model to improve the accuracy of
flood extent mapping. The state-of-the-art machine learning mod-
els developed for this task are elevation-guided and use physics-
informed algorithms that utilize Digital Elevation Model (DEM)
data [35,38,46,53,67]. These models require very accurate ground
truth labels for training. This is especially true for areas of high
and low relative elevation in a dataset, and for adjacent pixels with
different elevation, named border pixels. With these models, a high-
elevation pixel that is mislabeled as flooded can cause many sur-
rounding pixels to be incorrectly inferred as flooded. By using both
aerial imagery and corresponding elevation data, elevation-guided
annotation can create more accurate training data for dependent
models.

In this paper, we present FloodTrace, an interactive web-based
system for quick, accurate annotation that improves researchers’
workflows and enables high-quality crowdsourced labeling for flood
extent mapping. Our design was informed by domain experts
through several meetings and demos with one senior and two junior
researchers working on machine learning models for flood extent
mapping. In our system, we take advantage of elevation data to
inform annotation decisions with 3D interactive visualization and
semi-automatic annotation algorithms.

FloodTrace is designed to encourage and improve the quality of
crowdsourcing for this domain. For this goal, our solution is imple-
mented as an interactive web application, making it easily accessible
for end users. Our systems brings for the first time topological data
analysis to a convenient web environment; it provides the ability to
select features based on topological segmentations, a process that
would otherwise require complex setup, expertise with topological
toolkits, and slow, exhaustive workflows. To improve researcher
trust and understanding, our application provides an uncertainty
visualization component to visualize aggregated crowdsourced an-
notations and find areas of high uncertainty between annotators.
Our annotation tools can be used to directly correct labels for these
uncertain areas, quickly improving the quality of the aggregated
annotations.

To evaluate FloodTrace, we conducted a user study with 266 com-
puter science graduate students in which we logged all interactions
and results over several annotation tasks. Aggregated annotations
were then used to train elevation-guided machine learning mod-
els, which were tested for flood detection on unseen regions to
assess training data quality. In our experimentation, we found that
elevation-guided tools increased the accuracy of participants’ anno-
tations, while our topological segmentation tool greatly increased
annotation efficiency. We show that by using our aggregate visu-
alization and correction workflow, crowdsourced annotations can
be used to create models with equal performance to models trained
on fully expert-labeled annotations, while requiring a fraction of an
expert’s time. In summary, our contributions are:

* An intuitive web-based tool for crowdsourced annotation of flood
inundation maps that leverages satellite imagery, elevation data,
and topological segmentation to enable non-experts to quickly and
accurately label flooded areas. Our application is the first to bring
users access to topological segmentation techniques on the web.

¢ A novel review tool for visualizing aggregated crowdsourced flood
annotations that enables interactive correction to improve labels.

* An evaluation of our framework through a user study with 266 par-
ticipants, producing a total of 1,321 unique annotations over eight
distinct regions of North Carolina flood areas during Hurricane
Matthew.

2 BACKGROUND AND RELATED WORK

In this section, we first discuss the workflow of machine learning
researchers to provide context for how our application can improve
existing methods for flood extent mapping (Sect. 2.1). Then, we
explore previous work in crowdsourcing applications to motivate and
inform our design (Sect. 2.2) and review related work in annotation
tools (Sect. 2.3). Finally, we motivate and give background for
the topological data analysis methods used for our novel elevation-
guided annotation tool (Sect. 2.4).

2.1 ML for Flood Extent Mapping Workflow

While workflows can vary based on the specific application, we
report here an example workflow of training models for flood extent
mapping from a discussion with our expert collaborators.

Data acquisition and pre-processing: The process begins
with data collection, acquiring aerial imagery taken during a flood
disaster with corresponding digital elevation model (DEM) data.
This imagery can be obtained from a source such as NOAA’s Na-
tional Geodetic Survey of Emergency Response Imagery [47] in the
form of patches with global Coordinate Reference System (CRS)
info. These patches are then stitched together into test regions by
loading them into QGIS [50], finding which patches are needed
to create a test region using their CRS info, and then using the
GDAL [25] library in Python to combine them into one image.
DEM data can then be created for that region in the same way by
downloading and stitching together data patches at corresponding
CRS values, with DEM data widely available for locations in the
US [27] and globally [1]. Afterward, both imagery and DEM data
need to be resampled into the same spatial resolution so that the
pixels are aligned.

Image annotation, model training, and inferencing: The
next step is to annotate the flooded and dry areas in the imagery
to obtain ground truth labels for model training and evaluation.
Study areas for flood mapping can easily have millions of pixels,
so while this can be done with semi-automatic tools, it is still the
most time-consuming part of the flood extent mapping process,
taking multiple hours per region. In order to create ML models that
can robustly detect flooding on unseen data, large training sets are
required. While existing work has explored using fully automated
methods for creating labeled flood datasets [7], they are not widely
used in this domain because of quality concerns and the added
difficulty for researchers to understand and explain model behavior
after training. In our collaborators’ lab, the bulk of annotation
is accomplished by trained graduate students. In our work, we
hope to improve the workflows of ML researchers by reducing the
burden of annotation through crowdsourcing and more efficient
semi-automatic tools.

2.2 Crowdsourcing for Research

Many projects (e.g. eBird [65], GalaxyZoo [43]) have shown that
crowdsourcing and citizen science can be successful for large-scale
data collection and annotation. Because any barrier to entry will
lower the number of users of a platform, crowdsourcing applications
are almost always web-based for ease of access. To define the quali-
ties of successful crowdsourcing projects, Law et al. [41] deduced a
set of requirements that make crowdsourcing feasible, desirable, and
useful for a given research problem. Flood extent mapping satisfies
their challenges of data sensitivity, quantity, and availability, along
with crowd interest, intention, and ability as proven by other applica-
tions around crowdsourced flood event data [48,57,58]. In addition,
previous work [42] has shown that, while individual crowdworkers
may not perform well in flood mapping, aggregating annotations can
lead to high-quality results. This work aggregates user annotations
by labeling patches as flooded or dry if the ratio of received labels
for that patch is above an empirically chosen certainty threshold.



While we experimented with this method of aggregating annotations,
we found better ML model performance by training using scored
soft labels of flood and dry created from averaging user annotations.
Within crowdsourcing tools, FloodTrace is unique in providing a
system for experts to quickly visualize areas of uncertainty between
annotators and apply new labels to revise and improve the set of
annotations.

2.3 Annotation Tools

Multiple libraries such as OpenStreetMap [29], QGIS Cloud [50],
and ArcGIS Online [3] provide annotation tools for geospatial data.
Each of these tools was made for different use cases but can support
DEM data, interactive 3D rendering, and basic annotation with text,
polygons, and brushes. Their potential for flood extent mapping,
however, is limited by the fact that none provide semi-automatic
annotation tools for the purpose. Even with crowdsourcing, manual
annotation of flooded imagery with polygon selections and brushes
is too time-consuming to be desirable and results in less accurate
training data.

For semi-automatic annotation, there are two main classes of tools
in this domain. The first are those that produce a segmentation of the
input and allow users to apply flood or dry class labels to selected
segments (segmentation-type tools). Liang et al. [42] use imagery
patches exported from a graph-based clustering approach as these
segments, and show that these patches can be labeled effectively by
non-experts. Other work has used image features produced by class-
agnostic neural networks for labeling to create large flood annotation
datasets [9,51]. The second class of tools are those where the user
selects seed pixels which are then extended with connected pixels
by some rule (extension-type tools). As an example, Gebrehiwot
et al. [26] use a tool to automatically label connected pixels of the
same color as flooded or dry. While the semi-automatic annotation
tools mentioned so far operate directly on aerial imagery data, recent
exploratory work has been done on creating an elevation-guided
extension-type tool for labeling flooded datasets [2]. This work
utilizes DEMs to select all connected downstream (lower elevation)
or upstream (higher elevation) pixels from a selected seed pixel,
which they call the breadth-first search (BFS) method. We adapt their
BFS method as a state-of-the-art tool in our application (Sect. 4.2.1).
It is important to note that the original work [2] does not support
interactive 3D rendering, can only operate on small data patches, and
requires installation, all issues that are addressed by our web-based
solution with GPU accelerated rendering.

2.4 Topological Analysis of Elevation Data

Topological methods provide powerful tools for analyzing elevation
data features that are critical for flood mapping. Previously, they
have been successfully used to simplify and extract features of inter-
est in a variety of scientific domains [5, 6,34,49,52] and specifically
applied to DEM data. Yu et al. [64] propose a method combining
structural analysis and statistical filtering for terrain simplification
while preserving smooth morphology and structural edges. Guil-
bert [33] uses contours to generate a feature tree for underlying data
at multiple levels of detail. Wu et al. [66] use a localized contour tree
method to detect and characterize surface depressions across scales.
Recently, Corcoran et al. [10] show the advantages of persistent
homology methods in terrain analysis for their robustness to noise
and facilitating of machine learning methods.

The challenge in analyzing elevation data lies in its multi-scale
nature, with terrain features existing at widely varying scales.
This makes it difficult to identify relevant features, making multi-
scale views required in order to conduct meaningful analysis
[20,33,63,64,66]. To address this challenge, we utilize persistent
homology, a mathematical framework that quantifies the importance
of topological features across different scales. Persistent homology
is a powerful tool to remove topological features smaller than a

given scale [19]. This is done by considering the persistence of these
features, which is their lifespan when conducting a sweep through
the range of the function. Simplification by persistence involves re-
moving a topological feature if its lifespan is below some threshold.
In doing this, simplification by persistence is robust for maintaining
topological features in high-resolution data and preserves salient
details. As an example, a spatially small feature with a huge variance
in elevation compared to its surroundings would have a large per-
sistence value, and not be simplified until high thresholds, whereas
downsampling the data’s spatial resolution would quickly remove
this feature.

Along with persistent homology, we utilize contour tree segmen-
tation to create a hierarchical representation of the elevation data.
We experimented with topological segmentations produced by the
Morse-Smale complex (MSC) [18], merge, split, and contour trees,
and found the contour tree to produce segments most closely aligned
with flooded and dry regions while respecting elevation border pix-
els. Contour trees segment data by considering contours through
a sweep of the function range, defining segments as the birth or
split of a contour until it merges with another or vanishes. When
simplifying by persistence, less persistent topological features are
collapsed to the same elevation level as more persistent neighboring
features. Because contour tree segments are regions bounded by
contours at a given elevation level, this simplification corresponds
to increasing the size of segments by collapsing the neighboring
less persistent features into them. By considering multiple levels
of simplification, this gives a convenient segmentation for selecting
potential water levels in a flooded region, as water will naturally
pool into depression features and stop at hill features or elevation
contours.

Similar topological techniques have previously been utilized for
semi-automatic annotation in neuron tracing of large brain volu-
metric data [45]. This work utilizes the MSC to extract ridge-like
structures which correspond to neuron center-lines, which can then
guide user tracing. Simplification by persistence is used with a sin-
gle empirically chosen persistence threshold to remove noise and
create a sparser dataset for users to interact with. While taking
inspiration from this work, our system adapts topological methods
specifically to the labeling of flood extent in terrain data using con-
tour tree segmentations. Furthermore, our system allows interactive
selection of multiscale features by providing data simplified at vary-
ing persistence thresholds. This is necessary in this domain to find
landforms at different scales within elevation data. Finally, Flood-
Trace is the only system the authors found that integrates topological
segmentation into a web-based application providing unprecedented
accessibility and functionalities to crowdworkers.

3 DESIGN

Before creating our solution, we interviewed domain scientist col-
laborators (i.e., machine learning researchers building models for
flood extent mapping) to understand the state-of-the-art and require-
ments for this project. Our collaborators were two junior researchers
(PhD students) and one senior researcher (associate professor) who
had each been working in the domain for multiple years. In the
initial interview, we simply allowed these collaborators to voice
their goals for an annotation tool without providing guidance, to
not lead their conclusions. In this discussion, they highlighted the
need for elevation-guided annotation, then focused on their usage of
the state-of-the-art [2] and its limitations. From this interview, we
created requirements R1 and R2. From then, we began developing
our application while continuously integrating feedback, as advised
by best practices [56]. To accomplish this, we conducted several
unstructured interviews via in-progress meetings to demo the tool
and request feedback. Towards the end of the development cycle, the
application was also shared with the collaborators via a web deploy-
ment for them to experiment further. While much of the feedback
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Figure 2: An illustration of the full processing pipeline for FloodTrace. Input is given to the application in corresponding RGB imagery and elevation
data. The elevation data is used in the server backend to create a 3D mesh which is combined with the RGB imagery as shown in Fig. 3. The
elevation data is processed by the backend to create simplified topological segmentations at different levels of detail, as shown in Fig. 4. The user
then utilizes the elevation-guided tools described by Sect. 4.2 on the rendering in the web frontend. These annotations can then be downloaded
for training machine learning models directly in the case of expert-labeled data, or for aggregation in the case of crowdsourcing. Aggregated
annotations can be given as input to our application to be used with our uncertainty visualization tool for review and correction, as shown in Fig. 5,

before being used to train machine learning models.

received led to usability improvements, early progress meetings also
led us to the creation of requirement R3, as the researchers empha-
sized the labor hours required for annotation. We list the complete
requirements we developed for building an effective application for
flood annotation for ML training data:

* R1: Image annotation decisions must be informed by elevation
data. Elevation awareness enables robust annotation of regions
that are ambiguous with only imagery data and more accurate
annotation along elevation borders, naturally leading to higher
quality training data for ML models that rely on elevation data.
For accuracy and productivity, there should be intuitive and
interactive visualization of both elevation data and flooded
imagery, which is missing from previous work [2].

* R2: The annotation application must fully support the large
data sizes of study areas. Previous annotation work [2] can
only process small patches at a time, lowering productivity and
leading to potential inaccuracies on patch borders.

* R3: Annotation tools must be efficient and quick. Annotating
a single flooded region usually involves labeling millions of
pixels and multiple hours of work, and study areas commonly
consist of many regions. Because of this, the acquisition of
ground truth labels for training is extremely time-consuming.
Tools that increase annotation productivity will have a large
impact on improving ML researchers’ workflows.

Orthogonally, we also discussed our collaborators’ interest and
concerns with crowdsourcing annotations to be used as training data.
They expressed confidence that, while working on flood forecast-
ing requires extensive experience and domain knowledge, data for
flood detection (i.e. flood extent mapping) can accurately be la-
beled without expert knowledge by using aggregation of annotations
from many participants. This is supported by previous work [42]
which shows that aggregate annotation data seems to converge to the
highest quality around 20-25 annotators for a particular study area,
although this number likely changes depending on the difficulty of
annotation region, background of participants, and tools being used.
‘While our collaborators were optimistic about crowdsourcing, after
discussion we were left with another requirement for our annotation
system to support crowdsourcing properly:

* R4: Aggregate annotation data must be presented in an under-
standable way for researchers, and provide the ability to correct
inaccuracies. When dependent ML models make mistakes or
do not behave as intended, it is important for researchers to be
able to easily check model training data for errors and remedy
them, especially when relying on crowdsourced data. Our
application should provide effective visualization of aggregate
annotations along with tools to improve them quickly.

We implement our system to address these requirements in Sect. 4.

Mesh creation

Texture mapping

Figure 3: An example showing mesh creation and rendering with
aerial imagery RGB texture on a 1000 x 500 resolution example.

4 IMPLEMENTATION

FloodTrace consists of a web-based system that addresses the re-
quirements gathered in Sect. 3 for both crowdsourcing and direct
annotation by researchers. To address R1, our system provides inter-
active 3D visualization of aerial imagery and DEM data (Sect. 4.1).
R1 and R3 are both addressed by providing efficient elevation-guided
semi-automatic annotation tools (Sect. 4.2). R4 is addressed with
aggregate annotation visualization for viewing uncertainty and mak-
ing corrections (Sect. 4.3). For R2, our application is built using the
GPU-accelerated WebGL [30] backend in Three.js [60]. In our ex-
perimentation, the largest data size we have tested is 12000 x 12000
pixels, which is much larger than flood extent mapping regions. We
give a brief overview of our Ul design in Sect. 4.4.

A complete pipeline overview is given in Fig. 2. Researchers first
provide corresponding aerial imagery and elevation data to the server
backend for computing the 3D mesh and topological data structures
necessary for our methods. For crowdsourcing, these can easily be
precomputed and served directly at a deployed frontend site, as in
our user study, removing the need for crowdworkers to be given
raw data or access to the backend server. Once data is served to the
frontend, annotations can be made using elevation-guided tools on an
interactive 3D rendering. Once the annotation process is complete,
those can be downloaded and used directly to train ML models.
In the case of crowdsourcing, annotations can be downloaded and
submitted to researchers for aggregation. Researchers can then use
these aggregated annotations with uncertainty visualization tools in
the frontend to review and improve them before using them to train
ML models.

4.1 Rendering

An important feature to address R1 is providing the user with an
interactive 3D visualization to inform their annotation. Upon receiv-
ing the input of RGB imagery data and DEM data, our application
creates a 3D mesh in the backend as shown in Fig. 2. We utilize the
HMM heightmap meshing utility [21] to triangulate a mesh from
a given elevation image using the method of Garland and Heck-
bert [24]. The generated STL file is sent back to the web application,
where it is visualized with the RGB imagery data texture mapped
onto the mesh, as shown in Fig. 3.



Figure 4: An example region (A) with contour tree segmentations
after no simplification (B) and at persistence thresholds & = 0.02 (C),
0.04 (D), and 0.08 (E) of the elevation data function range. As seen
in (B), segmentations produced without simplification are too noisy
to be useful, while those in (E) correspond to data features such as
the hills, lake, and river. Segmentations colored by rainbow colormap.
Our application allows users to label these segmentations in one click
to quickly annotate features as flooded or dry.

We acknowledge that it would be possible to render the height
field directly [12, 17,39], however in our initial testing, we found
direct height field rendering in Three.js to impact the interactivity
of our system for large datasets. Pre-computing a triangulated mesh
allows for easy, interactive visualization on our front end. While
triangulating a surface from DEM data has been shown to introduce
more error than higher-order methods [40] and recent work has
been able to reconstruct volumes for flooded terrains with higher
accuracy [8, 11], we find this loss acceptable for our use case as
the mesh itself is only used for exploration. Our elevation-guided
annotation tools use the full-resolution underlying elevation data.

We initially experimented with fly-through camera controls for
our rendering but decided against them after negative feedback from
our collaborators. Instead, we implement orbit controls, modeling
other applications that handle 3D data such as Paraview. This camera
control method focuses on the annotation mesh, providing a more
intuitive experience for interacting with the 3D visualization. The
mouse scroll wheel controls the zoom, left click and drag rotates the
camera around the mesh, and right click and drag pans the camera.
In order to accommodate users working on laptops with only a
trackpad who cannot right-click and drag easily, we also give an
option for double-clicking on the mesh to pan to the area clicked.
The camera view can be reset to its starting position with a click of
a button in the menu.

Our collaborators expressed that having the ability to view the
RGB imagery on a flat 2D mesh can be beneficial in certain situ-
ations, so we incorporate an option that allow users to seamlessly
switch between 3D and 2D views. As users annotate a region, the
pixels labeled as flooded or dry are overlaid with a translucent color
mask of red or blue respectively. These colors were chosen to match
the convention in the domain [2], with bright red and blue uncom-
mon in satellite imagery. This overlay can be toggled, and it is
helpful to do so after annotating large features with semi-automatic
tools to ensure the area has been annotated correctly. These mesh
appearance functionalities are implemented with custom WebGL
fragment shaders for our Three.JS rendering.

4.2 Elevation-Guided Annotation Tools

Following R1 and R3, FloodTrace utilizes elevation data for annota-
tion tools that are able to quickly create accurate, robust labels for

large flooded regions. These tools are built for intuitive use by both
domain experts and crowdworkers. We provide both extension-type
and segmentation-type semi-automatic methods in the form of the
BFES (Sect. 4.2.1) and topological segmentation (Sect. 4.2.2) tools
respectively.

4.21 BFS Tool

This method of extension-type semi-automatic annotation was first
proposed by Adhikari et. al [2], and we adapted it as a state-of-
the-art tool in our application. This tool is used by annotating a
seed pixel, which is then extended in all directions by connected
downstream or upstream pixels (depending on whether the label is
flooded or dry) in the elevation data. This accurately labels flooded
or dry regions by taking advantage of the physical constraint that if a
location is flooded, then its adjacent locations with a lower elevation
will also most likely be flooded. In the same way, adjacent locations
of dry areas that have higher elevations will most likely be dry. This
approach accurately annotates regions along elevation border pixels,
as the BFS stops where the elevation becomes higher or lower than
the connected pixel, depending on if flooded or dry is being labeled.
This approach also addresses the difficulty of annotating ambiguous
pixels in the RGB imagery, such as those covered by tree canopy or
clouds, by automatically labeling them using neighboring pixels.

Thanks to the 3D mesh rendering in FloodTrace, the user can
purposefully select high-elevation flooded pixels or low-elevation
dry pixels in order to label as large of a downstream or upstream
area as possible, improving efficiency. Our application also extends
the method with a polygon BES tool, where one can select points to
form an arbitrary polygon, fill the polygon, and run a BFS selection
from all points on the borders. This feature allows larger areas to be
selected quickly while ensuring that the annotation’s border pixels
correctly correspond to elevation changes.

4.2.2 Topology Segmentation Tool

We utilize topological data analysis to create a segmentation-type
tool that can quickly annotate regions according to multi-scale fea-
tures in the elevation data. To do this, FloodTrace utilizes the Python
binding of the Topology Toolkit (TTK) [61], specifically its func-
tions for simplification by persistence (which implement the works
of Tierny and Pascucci [62] and Lukasczyk et al. [44]) and contour
tree creation (which implement the work of Gueunet et al. [31,32]).
Given input data, the backend first uses persistent homology to com-
pute simplifications of the data at varying thresholds, then creates
a set of contour tree segmentations from the simplified data. These
segmentations are sent to the frontend, where they can then be used
for annotation. We show an example region with contour tree seg-
mentations from data simplified at different levels in Fig. 4. Notice
how the simplified segmentations (such as E) capture useful terrain
features for flooded and dry areas, such as the large hill at the bottom
left, lake and river in the middle, and pond in the bottom right.

By providing the segmentation set for selection, users can quickly
annotate large, obviously flooded and dry features, while maintain-
ing the detail necessary to accurately label smaller features, allowing
for robust annotation of features at different levels of detail. An-
notation is done simply and quickly with the segmentation tool in
our application by applying flooded or dry labels to the segment
currently under the cursor. The user can quickly switch between
different simplification levels in the UL, interactively changing the
segmentations that will be used for selection to that level. Users
must switch between simplification levels in order to ensure that
they do not label an area so large that it includes both flooded and
dry regions or so little that they do not fully capture a flooded or dry
feature, so using this tool does take some experimentation. Example
annotation using this tool can be seen in our supplementary video.

Based on demo feedback from our collaborators, we provide
two options for visualizing the segmentations of a dataset. The



Figure 5: Visualization of aggregated crowdsourced data from 45
participants. The aggregate view is shown in A) with no certainty
threshold and in B) with a certainty threshold of 0.6. This view can
quickly show the areas where the group of annotators were confident
in labeling flooded or dry. The variance view is shown in C) with a
threshold of 0.7 and compared in D) to a view with no annotation
texture. With this view, it is easy to identify regions where there was
high annotator disagreement, such as those shown in the orange
borders. These selected regions are obviously flooded, and so the
researcher can quickly correct these areas by labeling them. We
explore how this can improve model performance in Sect. 5.

first option is to paint the borders of the current segmentations on
the mesh in white, which effectively shows contours of the data
simplified at the current level. This is used to quickly see which
simplification level leads to the desired level of detail by viewing
how segmentation borders change when cycling through the levels.
The second option is to highlight in red or blue (depending on
flooded or dry potential label) the segment currently hovered over
by pressing the highlight key. This is used to quickly check the
coverage of the selected segment to confirm it contains fully flooded
or dry imagery before labeling.

To keep the interaction simple for the user study, we provided six
simplification levels based on thresholds at logarithmic steps along
the datasets’ normalized function range (i.e. € =0, 0.01, 0.02, 0.04,
0.08, 0.16). While we found these sufficient for all of our study
regions, necessary simplification could vary based on a particular
researcher’s dataset. To support this, users can choose the number
of thresholds and persistence values themselves when submitting
input data, as well as query the backend for more simplified data as
needed.

4.3 Aggregated Annotation Visualization

In order to address R4, FloodTrace offers the capability for re-
searchers to visualize aggregated crowdsourced annotations and fix
inaccuracies before training dependent models. We accomplish this
through two novel views that are inspired by work on uncertainty
visualization in mapping applications. In prior work [36,37,55],
the uncertainty of 2-dimensional variables was communicated effec-
tively through inverse mapping of color saturation to the magnitude
of uncertainty; when the value of the variable is more uncertain,
the pixel’s color is made to have lower saturation. We follow this
standard, with uncertainty for pixels in our aggregate visualization
defined by scarcity of labels or variance between annotators’ labels
in the given set of annotations.

Before visualization, each annotation in a given set is transformed
into a 2-dimensional array where red (flooded) pixels are made -1,
transparent (unlabeled) pixels are made 0, and blue (dry) pixels are
made 1. For our first view, the aggregate view, we find the mean
for each pixel across annotations, giving a value in [-1, 1] where
a score of -1 means all annotators agreed the pixel is flooded, 1
means all annotators agreed the pixel is dry, and scores closer to 0

Figure 6: Ul for our application. Settings blown up for readability.

mean the annotators either disagreed or chose not to label the pixel.
These values are then visualized as a color-mapped texture on the 3D
rendering within our application. We follow the standard of inversely
mapping uncertainty to saturation in our colormap, but because the
underlying RGB imagery also contains important information for
the researcher, we extend this by additionally mapping uncertainty
to texture transparency. Pixels that annotators uniformly labeled as
flooded or dry are colored with a more opaque red or blue, while
this color becomes more white and transparent the more uncertain
annotators were about its label.

To simplify the texture being mapped, a sliding tool in our in-
teraction menu gives users the ability to threshold pixels by their
certainty. This collapses pixels; values to O if their absolute value
is not greater than the threshold, effectively hiding the values since
0 is fully transparent. An example of this view aggregated from
45 unique annotations from our user study is shown in Fig. 5 (A,
B). This view was developed with collaborator feedback as a way
to quickly understand the labels being used for training data and
identify possible sources of error, helping to address R4. In addition,
while dependent models can be trained using scored soft labels of
flood and dry scores, the ability to explore certainty thresholds in
our view allows researchers to find values for binarizing aggregate
data into hard labels.

In order to fully address R4, we create another view specifically
for revising aggregated crowdsourced annotations. This view, the
variance view, highlights the areas where annotators disagreed the
most, as these are likely to need revision. It does this by displaying
the computed variance for the set of annotations. We use a similar
color mapping as before, with higher uncertainty (in this case vari-
ance) corresponding to white color. Using a white color for areas of
interest can clash with the satellite imagery when it contains white
features such as buildings, so we also provide the option to use a
low saturation pink. Because we want to focus the user on the areas
of high uncertainty for correction, we inversely map uncertainty to
texture transparency. This view is shown in Fig. 5 (C). With this
view, researchers can easily check the areas of high variance and an-
notate them with our brush, BFS, or segmentation tools just as they
would for a normal annotation task. The crowdsourced annotations
can then be downloaded with hard correction labels applied to these
annotated areas to improve model training.

4.4 User Interaction

The UI for FloodTrace is shown in Fig. 6, with an interaction menu
in the top right, toggles between erase/fill and flood/dry selection in
the top left, key reminders in the bottom left, and checkpoint/finish
buttons in the bottom right. The on-screen Ul is limited in order to
simplify the user experience and allow the annotation mesh to take
up the full view.

Users make annotations by aiming the mouse cursor at an area
of the mesh and pressing the chosen key of any of the annotation
tools. Along with the semi-automatic tools, we also provide a brush
to manually paint and erase annotation. Point BFS, segmentation,
and brush tools immediately annotate the area underneath the cursor
using their respective algorithms on key press. Polygon selection
with BFS occurs by pressing a key to repeatedly select desired points



on the polygon to be drawn and then pressing another key to confirm
the selection. This then fills the selected polygon and runs the BFS
method on the pixels of its boundaries.

The current annotation type/color is toggled with a switch on the
top left of the UI, which affects whether the BFS method selects
upstream or downstream pixels. Users can also toggle annotation
mode from "Fill’ to "Erase’ in order to use all the different annotation
tools to remove annotation color rather than paint on the texture.
Undo and redo functionality are given to allow users to take back
accidental or ill-thought-out annotations, and put them back again.

As users utilize the various tools in FloodTrace, all of their ac-
tions are logged with enough detail to replay their session completely
given an output log. This gives the ability to create checkpoints dur-
ing annotation, where the state of the current session is downloaded
as a JSON log file and can be uploaded in the future to restart the
session at that state. Sessions can also be started with a given annota-
tion texture. When a user selects to finish their session, their log file,
annotation texture, and metadata about the session are downloaded.

5 [EVALUATION

In this evaluation, we study FloodTrace through an experimental user
study explained in Sect. 5.1. We use the results of this study to assess
the efficiency of our topological segmentation tool and the value
of our aggregate visualization and correction strategy. To do this,
we first analyze the accuracy and annotation speed of participants
(Sect. 5.2). We then use participant annotations as training data for
flood detection models and assess model quality (Sect. 5.3).

5.1 User Study Setup

The dataset used for the study consists of flooded regions of North
Carolina during Hurricane Matthew in 2016, with high-resolution
aerial imagery from the National Oceanic and Atmospheric Admin-
istration National Geodetic Survey [47] and corresponding digital
elevation model (DEM) data from the University of North Carolina
Libraries [14]. All data was resampled to a resolution of 2 square
meters per pixel, which is common in this domain [38,53,67]. Eight
separate regions were chosen with dimensions between 4104 x 1856
pixels and 6472 x 3136 pixels, and these regions were split into
quadrants for smaller workloads for participants of the study.

297 graduate students of a machine learning course volunteered
to participate in this study, of which 266 followed through with
final submissions. Before beginning annotation work, participants
watched an instructional video explaining how to use all of the fea-
tures of FloodTrace and how to determine whether to mark areas as
dry or flooded. They were then given access to a web application
which they could visit at any time within the following two weeks
to complete the work assigned to them. On the application, all in-
teractions made by the students were logged, and these logs were
submitted with output annotations on completion. Each student was
asked to complete five annotation tasks, with each task requiring
annotating at least 60% of a quadrant of one of our chosen regions
as flooded or dry, leaving any remaining pixels as unlabeled. These
tasks were created for two specific experiments, in addition to pro-
viding a reasonable number of annotations and interaction logs to
draw insight from.

The goal of the first experiment was to fairly compare the effec-
tiveness of the annotation tools, ensuring that participants became
familiar with both semi-automatic tools. This experiment consisted
of three annotation tasks performed on the same quadrant. For the
first, the user would perform annotation while restricted to only one
of the semi-automatic tools. Next, they would complete the same
annotation task while restricted to the semi-automatic tool they did
not have in the first task. Last, they would complete the annotation
task again with access to both semi-automatic tools. Participants
were divided evenly so that half started with the BFS tool and half
started with the segmentation tool. Brush tools were provided in

all three tasks to allow students to make fine-grained corrections or
label features that were difficult to annotate semi-automatically.

The second experiment was meant to test the effectiveness of
the 3D mesh in improving participants’ insight and accuracy. This
required users to perform two annotation tasks on the same quadrant,
although different form the one used in the first experiment. In
this experiment, students would annotate while restricted to only a
2D view of the aerial imagery, then they would annotate the same
quadrant with the 3D mesh and full 3D view interactivity. Both tasks
for this experiment had full access to brush and semi-automatic
tools.

At the conclusion of this study, we received 266 submissions,
with 259 of those including all five tasks that the participant was
assigned. Aggregating all submissions, each quadrant in our dataset
was annotated on average 41 times, 1,321 total annotations were
collected, and participants collectively annotated over 3.5 billion
pixels. We open source this dataset of annotations as a contribution
of this paper, along with metadata for each annotation.

5.2 User Study Analysis

In this section, we analyze the results of our user study to draw
conclusions about how the usage of different annotation tools (brush,
BFS, and segmentation) affected annotation speed and accuracy.
Specifically, we test the hypotheses that elevation-guided tools in-
crease accuracy, while the segmentation tool decreases the time
needed for annotation. We also assessed how providing users with a
3D rendering affected their accuracy, using the two annotation tasks
from the second experiment in Sect. 5.1, but found no statistically
significant results so omit these results for space. In Sect. 5.2.1 we
first define our metrics and describe how the data was preprocessed.
Next, to compare the tools against each other and quantify the dif-
ferences in speed and accuracy, we divide annotations into groups
depending on which tool was used for the majority of labeling and
compute differences between groups in Sect. 5.2.2 . For all statisti-
cal tests, we select a 95% confidence interval for significance, then
use the Benjamini-Hochberg (BH) procedure to correct for multiple
testing by limiting the false discovery rate to 0.05 in each family of
tests. Necessary p-value thresholds for significance computed by
BH (o) are presented with each table.

5.2.1 Tool Analysis Setup

Because the goals of R1 and R3 are to increase annotation speed and
accuracy, these are the metrics we study. We measure annotation
speed simply as the time taken to complete an annotation. We
measure annotation accuracy by comparing participant annotations
against reference annotations that were manually labeled either by
our domain expert collaborators, or members of our team after being
trained. To avoid penalizing unlabeled pixels, we only consider
pixels that were labeled as flooded or dry in both the participant and
the reference annotation when measuring accuracy. The formula we
use to compute accuracy is shown below. TF and TD denote true
flooded and true dry (pixels with the same label in participant and
reference), and FF and FD are false flooded and false dry (pixels
with opposite labels in participant and reference):

TF+TD
TF+TD+FF+FD

An accuracy percentage of 0% here means all participant-labeled
pixels disagreed with all corresponding labels in the reference, 100%
means all user-labeled pixels agreed with corresponding labels in
the reference, and 50% means half of the user-labeled pixels agreed
with corresponding labels in the reference. Note that a score of 50%
can be achieved by labeling pixels randomly since there is a 50%
chance of guessing a flooded or dry label correctly.

Before statistical analysis, we first conducted data cleaning to
remove potential spoilers from the dataset, as we found some par-
ticipants to misunderstand the labeling task or leave the application

x 100%



Brush BFS Segment. | Elevation Guided
Mean 90.52 91.76 91.64 91.67
P-Value vs Brush - 0.092 0.031 0.020

Table 1: Mean accuracies and p-values from t-tests against the brush
group. We find all three groups that rely on elevation-guided tools
to be more accurate than the group using the manual tool. The «
needed for significance (computed by BH) for this family of tests was
0.033. All comparisons are statistically significant except the BFS
group, likely because the group had a much smaller sample size.

open without progress for extremely long periods. We computed the
means and standard deviations for annotation completion time and
accuracy, and used these to compute a threshold at which to discard
annotations. We chose a standard z-score of 3 as our cutoff point
(meaning 3 standard deviations from the mean, or falling outside
of the 99.7% confidence interval), and were left with thresholds of
17.6 hours for annotation time and 55.4% for accuracy. Because the
variance of annotation times was much higher than the variance of
accuracies, the time threshold could likely be more aggressive; the
median completion time was only 32 minutes, so it seems probable
that times above a few hours would be the result of idling on the
page. We investigated using z-scores of 1 and 2 to create stricter time
thresholds (corresponding to 7.0 and 12.3 hours respectively), but
found that these led to the same statistically significant conclusions
as using a z-score of 3, only more pronounced, so we present here
the results using the more inclusive 17.6 hour cutoff. With our time
and accuracy thresholds, we discard a total of 40 annotations and
leave 1,281 activity logs for analysis.

5.2.2 Tool Analysis Results

To study the impact of different tools on our metrics, we use the
participants’ activity logs to group these annotations by which tool
was used for a majority of pixels. We can then compare these
groups’ accuracies and annotation time by using Welch’s t-test,
which computes whether the differences in the metrics are significant
for groups of unequal variances and sizes. We create four groups
based on tool usage as described below:

Brush: Annotations where the brush tool was used to label
> 50% of all labeled pixels

BFS: Annotations where the BFS tools (polygon and point
selection) were used to label > 50% of all labeled pixels

Segmentation: Annotations where the segmentation tool was
used to label > 50% of all labeled pixels

Elevation Guided: Annotations where elevation-guided tools
(segmentation and both BFS selections) combined were used
to label > 50% of all labeled pixels. This group is used to
directly compare elevation-guided tools against the brush

In order, these groups ended up with sizes of 787, 134, 346, and 494
annotations. We find that, even though the instructional video em-
phasized that participants should rely mostly on the elevation-guided
tools, users gravitated towards the more simple and familiar brush
tool. This likely shows an example of algorithm aversion [15, 16],
where users are proven to prefer human decision-making rather than
algorithmic tools even when presented with algorithms that outper-
form humans. We acknowledge that this could be fixed in future
deployments by forcing some usage of the elevation-guided tools,
but we leave more in-depth approaches to overcoming algorithm
aversion as future work.

We provide the mean accuracies for each group in Table 2. Be-
cause we test whether elevation-guided tools increase accuracy, we
also present the p-values for their differences against the brush group.
From these results, we find that those who relied on elevation-guided
tools were able to produce more accurate annotations than those
who relied on the brush tool. This shows that elevation-guided tools
are effective for improving accuracy (and thus training data qual-
ity), even for untrained crowdworkers. We additionally checked for

Can label areas
under tree canopy
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Segmentation border pixels

Figure 7: Aggregated annotations from brush and segmentation
groups on a study quadrant, visualized using the flattened aggregate
view with a certainty threshold of 0.33. In green, notice how the anno-
tations from the brush group do not label the border pixels between
the flooded and dry areas, while the annotations from the segmenta-
tion group correctly assign labels to these. Also, in pink, notice how
the brush group leaves the selected tree canopy area unlabeled, while
the segmentation group labels it flooded.

Brush BFS Segment. | Elevation Guided
Mean 79.61 77.73 48.07 56.74
P-Value vs Brush - 0.434 0.000 0.000
P-Value vs BFS 0.434 - 0.007 0.036
P-Value vs Seg. 0.000 0.007 - 0.129

Table 2: Mean time taken and p-values from t-tests between each
group. The a needed for significance (computed by BH) for this
family of tests was 0.025. All comparisons are statistically significant
except brush against BFS, and elevation-guided against BFS and
segmentation. These results show that the segmentation tool greatly
decreases annotation time.

differences between the BFS, segmentation, and elevation-guided
groups and found no statistically significant results.

To gain insight into the significance of accuracy differences be-
tween groups and explain how elevation-guided tools improve ac-
curacy, we present a qualitative analysis of aggregated annotations
from the brush and segmentation groups in Fig. 7. For the chosen
quadrant, there were 25 annotations in the brush group and 18 in the
segmentation group. This example shows how the segmentation tool
improves participant annotations by labeling border pixels and tree
canopy. This is beneficial for dependent ML models, as elevation
border pixels are especially important for elevation-guided training.

To test annotation speed of the tools, we provide the mean time
taken for each group as well as the p-value for their differences
against each other in Table 2. From this table, we find that the
segmentation tool was significantly faster than the other two tools.
To better quantify the tools’ differences, we also present annotation
speed results in a box and whisker plot in Fig. 8. This plot shows
that annotations relying on the segmentation tool were much faster
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Figure 8: Box and whisker plot showing the time taken for annotations
in the brush, BFS, segmentation, and elevation-guided groups. We
find use of the segmentation tool drastically reduces the time taken to
complete an annotation, with brush and BFS groups having median
times of 39.97 and 38.18 minutes while segmentation and elevation-
guided groups have median times of only 17.45 and 21.65 minutes.



than those that did not, with the median time taken of the segmenta-
tion group being 2.29x and 2.19x smaller than the medians of the
brush and BFS groups respectively. These results clearly support
our segmentation tool as a method of quick annotation while pre-
serving accuracy, and show it outperforms the BFS tool in efficiency.
Importantly, these results show that even untrained crowdworkers
can use this tool effectively.

5.3 Crowdsourced Annotations for ML Model Training

In this section, we show how FloodTrace can enable researchers
to use crowdsourced annotations as high-quality training data
through our aggregation and correction process, which we detail
in Sect. 5.3.1. We propose this step to replace the extremely time-
consuming annotation step of researchers’ workflows. To assess
the training data quality of the results from aggregation and correc-
tion, we use study participants’ annotations as training data for ML
models and compare them against models trained with reference
annotations Sect. 5.3.2.

5.3.1 Example Aggregation and Correction

We conducted an example of our aggregation and correction pro-
cess on two randomly selected regions using all the annotations for
those regions from our user study. We purposefully did not use any
accuracy, time, or tool usage cutoffs when creating these sets of
annotations in order to ensure there would be inaccuracies in the
aggregate data. For each region, there was an average of 45 anno-
tations per pixel. We input these sets to the application frontend,
and one of our trained users utilized our aggregate and uncertainty
views to correct each region. On average, 4% of each region’s pixels
were corrected. This process was timed, and it took an average of 24
minutes to make each region’s correction annotation. We compare
this to the average time it took our trained users to create reference
annotations using our application, which was 116 minutes per region.
As training robust flood detection models requires many different
annotated regions, this shows how the crowdsourcing and correction
workflow can save researchers huge amounts of time compared to
the typical annotation process.

5.3.2 Prediction Setup and Results

In order to use our crowdsourced annotations (corrected and uncor-
rected) to train our ML models, we pre-process them by turning
each group of annotations into a training set of soft labels. This is
done by computing the flood and dry scores for each pixel, where
the flood score is the sum of the number of times it was annotated as
flooded divided by the number of times it was annotated as either
flooded or dry, with dry scores using the same formula. We ignore
unlabeled pixels in each annotation to compute these scores. We
experimented with binarizing training sets by giving hard labels of
flood and dry to pixels with scores above a certainty threshold, but
found better performance by training using these soft labels. This is
likely because soft labels with scored values are able to encode the
probability of pixels being flood or dry, which allows the model to
learn more effectively.

For our deep learning models, we follow the architecture de-
scribed by Adhikari et al. [2] to create elevation-aware U-Net clas-
sification models to predict flooded and dry labels. Resulting pre-
dictions from this architecture take the form of a probability map,
where pixels in the input are predicted with both flooded and dry
probability values. We transform this into a binary class format for
evaluation metrics by choosing the higher of the two scores for each
pixel and applying that label. This gives us a fully labeled output,
which we compare with our reference annotations to compute pre-
cision, recall, and f-scores for each class, along with accuracy as
computed before. As the reference annotations include some unla-
beled pixels, we ignore model predictions for these when computing
metrics.

Group Class Precision Recall F Avg. F Accuracy
Uncorrected F]l)or({d 82?2 8;?8 83;8 0.895 90.6%
Conected | oo | owsr | ooy | ooo | 09 | %44
s | 0 | 0% | O I oo | e

Table 3: Performance metrics for models trained using uncorrected,
corrected, and reference labels as ground truths. Results show that
corrected crowdsourced labels lead to around equal accuracy and
f-score as fully expert-created labels, while requiring much less work
on the part of the researcher.

We initialized three models, using the architecture described,
and trained each of them in the same two regions. Each model
used a different set of labels as its respective ground truths during
training, with one model using the uncorrected crowdsourced labels,
one using the corrected crowdsourced labels, and one using our
reference labels. We then use these three trained models to predict
flooded and dry labels for an unseen test region and compute our
quality metrics. We show these results for each group in Table 3.
We find that, with the corrected crowdsourced labels, we are able
to achieve around equal results (measured in accuracy and f-score)
to our expert-labeled references and improve dramatically over the
uncorrected labels.

6 CONCLUSION AND LIMITATIONS

We have presented FloodTrace, a web-based application for quick
and accurate annotation of flooded regions that better enables crowd-
sourcing. This framework was built directly from requirements
gathered from researchers in flood extent mapping. Our application
utilizes a region’s elevation data to provide users insight in 3D and
guide users with semi-automatic annotation tools. This application
has already been utilized for the creation of training data by domain
experts for cutting-edge flood extent mapping models [54]. Our
application brings to the web environment, traditionally complex
segmentation methods using topological data analysis to greatly
outperform the state-of-the-art elevation-guided tool in efficiency.
Our experimental user study shows that the benefits of our tools can
be found even for untrained users. With our method for aggregat-
ing and correcting groups of annotations, researchers are able to
use crowdsourced annotations as training data for their ML models
with equal performance to fully expert-labeled data. This improves
their workflows greatly, replacing an extremely time-consuming
annotation process with a much quicker correction step.

Our work does have limitations. Our work only supports labeling
for two classes of pixels, flooded or dry. Selecting features of the
data with more specific labels, such as permanent water bodies,
is useful for some flood detection models, and future work could
tackle extending elevation-guided annotation tools to tasks with more
informative labels. In addition, there are limitations with regards to
our use of DEM data for our evaluation. The use of DEM data means
that objects above the ground level are absent. For some regions,
such as heavily urban environments, the presence of these objects
could affect water propagation enough to cause the semi-automatic
tools to label things incorrectly, for example causing the BFS to
falsely label downstream pixels as flooded when the water actually
stopped at a building. This limitation could be addressed by using
digital surface model (DSM) data or models built from LiDAR data,
which take into account above-ground structures. Our application
can support any form of elevation data as long as it corresponds to
the input satellite imagery, but as of yet we have only evaluated the
use of DEM data. Experimentation with other elevation models is
left for future work. Finally, as with the machine learning algorithms
that rely on elevation data, our system requires that the elevation data
and flooded aerial imagery being annotated are collected at similar
dates. If not, deviations between elevation at the time of flooding
and time of data collection could lead to error.
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