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Abstract—Scientific phenomena are being simulated at ever-
increasing resolution and fidelity thanks to advances in modern
supercomputers. These simulations produce a deluge of data,
putting unprecedented demand on the end-to-end data-movement
pipeline that consists of parallel writes for checkpoint and
analysis dumps and parallel localized reads for exploratory
analysis and visualization tasks. Parallel I/O libraries are often
optimized for uniformly distributed large-sized accesses, whereas
reads for analysis and visualization benefit from data layouts
that enable random-access and multiresolution queries. While
multiresolution layouts enable interactive exploration of massive
datasets, efficiently writing such layouts in parallel is challenging,
and straightforward methods for creating a multiresolution
hierarchy can lead to inefficient memory and disk access.

In this paper, we propose a compressed, hierarchical layout
that facilitates efficient parallel writes, while being efficient at
serving random access, multiresolution read queries for post-hoc
analysis and visualization. To efficiently write data to such a
layout in parallel is challenging due to potential load-balancing
issues at both the data transformation and disk I/O steps. Data
is often not readily distributed in a way that facilitates efficient
transformations necessary for creating a multiresolution hierar-
chy. Further, when compression or data reduction is applied,
the compressed data chunks may end up with different sizes,
confounding efficient parallel I/O. To overcome both these issues,
we present a novel two-phase load-balancing strategy to optimize
both memory and disk access patterns unique to writing non-
uniform multiresolution data. We implement these strategies in
a parallel I/O library and evaluate the efficacy of our approach
by using real-world simulation data and a novel approach to
microbenchmarking on the Theta Supercomputer of Argonne
National Laboratory.

Index Terms—Parallel I/O, load-balancing, multiresolution,
precision, compression, data layout, aggregation.

I. INTRODUCTION

Effectively managing the deluge of data we expect at
exascale is critical in ensuring scientific progress across do-
mains. Thanks to massive hardware improvements and larger
clusters, scientists are performing more complex and accurate
simulations, generating enormous data sets in the process (now
hundreds of gigabytes per time step or more). At the same
time, post-hoc analyses of such datasets are often performed
with modest computational resources. This necessitates com-
pact data formats that support both low latency random-access
reads and progressive, multiresolution queries, so that users
can efficiently work with data by loading only the necessary
bits. In particular, progressive multiresolution data layouts

allow exploration of large volumes of data with low latency.
Coarser resolutions of a scientific dataset can be accessed
almost instantaneously while further details can be loaded
progressively (and asynchronously). Progressive data layout
thus enables interactive visualization and exploration of very
large volumes of data, and has been successfully used in
simulation-visualization pipelines [1]. However, writing tradi-
tional multiresolution data layouts directly from applications
in parallel is challenging, mainly due to the communication
overhead involved in gathering initial coarser resolution data
that is spread across the entire spatial domain. Previous studies
using multiresolution data layouts [2] have demonstrated that
parallel I/O performance is often limited by large collective
communication operations among processes (i.e., required to
collect coarse level resolution data).

We observe that a global multiresolution hierarchy can also
be implicitly constructed by having multiple independent local
hierarchies, one for each localized chunk of data, termed patch
in this paper. This approach avoids gathering coarse-resolution
data globally at write time because the patches can be writ-
ten independently instead. Furthermore, because each patch
has its own hierarchy, I/O schemes have complete freedom
in organizing patches for optimal I/O performance without
the risk of disturbing the global hierarchy. With the patch
resolution (size) being configurable and not being dependent
on global resolution or the number of processes, there is
additional flexibility in controlling the optimal file size (and
hence, I/O burst size) during parallel I/O. At query time, data
at any resolution level can be retrieved and assembled from
multiple patches. Based on these observations, we propose a
patch-based data layout, where multiresolution hierarchies are
created independently and locally within every patch, instead
of creating a global multiresolution hierarchy spanning the
entire spatial domain. This approach is more amenable to
parallel I/O than traditional hierarchical layouts while still
allowing for fast multiresolution access.

In practice, data is often transformed before being written
to relieve I/O stress, for example with filtering, feature reduc-
tion, and compression. In our framework, to achieve both a
multiresolution and compact layout, we employ the wavelet
transform, followed by compressing the wavelet coefficients
with ZFP [5]. Such transformations, interposed between sim-
ulation output and I/O, present a load-balancing problem:



(a) S3D flame dataset [3]

(b) Turbulence dataset [4]

Fig. 1: Size of data held by processes after wavelet transform
and ZFP compression for two different datasets demonstrates
the imbalanced nature of data distribution. The S3D flame
data is spread across 512 processes and the turbulence dataset
across 32,768 processes. It can be seen that the degree of
imbalance is greater for the S3D (compared to turbulence).

some processes may need to do significantly more work than
others because they host more patches or more data-heavy
patches. We solve these problems through (i) an optimal patch
distribution phase that ensures processes end up with a similar
number of patches, and then (ii) performing a load-balancing
aggregation phase to balance the data load during I/O across
a small number of aggregator processes, while retaining some
coarse spatial locality.

The patch distribution phase addresses the problem of
balancing the number of patches per process, a mapping that
greedy approaches do poorly. After the patches are distributed
uniformly across processes, wavelet transformation and zfp
compression are applied independently to them. This further
creates a load-balancing problem, as reduction rates may (and
often do) vary widely across the simulation domain (see
Figure 1), creating uneven, non-uniform data loads across
processes. This imbalance in load percolates to the parallel
I/O layer, causing sub-optimal performance. We mitigate this
problem with our load-balancing aggregation scheme, which
distributes compressed patches across aggregators to be even
in terms of bytes. We use a relatively smaller number of ag-
gregators before final disk I/O to collect data from simulation
processes, while also preserving the spatial locality of the
patches. Spatial locality is important as nearby patches are
likely to be queried together at reading time, so storing them

close together on a disk typically reduces read latency. Besides
ensuring near-uniform data distribution across aggregators,
our scheme endeavors to assign nearby patches to the same
aggregator so that they are written to the same file on disk.

Load balancing at I/O time is a key problem to solve,
not only because data reduction techniques are becoming
increasingly universal, but also because certain simulation data
types are inherently imbalanced, such as AMR grids [6] or
particles [7]. Most I/O libraries today either are designed to
write near-uniform data distributions (e.g., raw regular grids)
or have not adequately addressed the balancing problem. As
such, except for proposing solutions to this problem in novel
distribution and aggregation phases, we also introduce an
I/O benchmark that simulates real-world non-uniform data
distribution patterns at large scales. We achieve this goal
by extrapolating post-compression patch sizes from relatively
small data sets to any scale. Our benchmark is useful for
testing and tuning parallel I/O libraries because it does not
rely on a computationally expensive simulation being run or
any large-scale extensional dataset to be used while retaining
important statistics of compressed patches originating from
real-world data. In summary, we make the following specific
contributions to the literature:

1) A compressed, patch-based, hierarchical data layout that
is amenable for parallel I/O while effectively supporting
random access, multiresolution queries.

2) A patch distribution phase that facilitates load balancing
for data transformation while minimizing data move-
ment. Empirical evaluation shows a 2.5× improvement
over a non-balancing approach.

3) An aggregation phase that balances non-uniform data.
Experiments show a 1.3× improvement over a non-
balancing approach.

4) A novel I/O benchmark that simulates non-uniform
patch size distributions found in scientific data at scale
and an experimental evaluation of different I/O pipelines,
including traditional I/O approaches.

Our patch distribution phase is specific to multi-resolution
data layouts and can be used by any parallel I/O library [8] that
supports such data. However, our load-balanced aggregation
technique is general-purpose and can be used for any non-
uniform data distribution (irrespective of its source), and thus
can also be adopted by existing parallel I/O libraries such as
PnetCDF [9], HDF5 [10] and ADIOS [11].

II. RELATED WORK

Parallel I/O for grid-based and structured datasets has been
widely explored. However, few studies [12] have focused on
parallel I/O for non-uniform load distributions and in particular
for compressed multiresolution data. It is partly due to the
challenges of working with non-uniform data distributions.
Developers of simulation runtimes and scientific applications
are generally more focused on load balancing the computation
workload and much less on improving the file I/O pipelines.
It shifts the challenge to parallel file systems, where there are



few efforts to alleviate load imbalance on I/O servers [13].
Popular I/O libraries, such as PnetCDF [9], parallel HDF5 [10]
and ADIOS [11], are built on top of MPI collective I/O [14],
which uses two-phase I/O by default. The two-phase I/O in
MPI-I/O defaults to one shared file, which often results in
sub-optimal performance.

Parallel I/O libraries are often tunable, as some strategies
work better on different networks, file system configurations,
or levels of parallelism. State-of-the-art parallel I/O libraries
such as ADIOS, PnetCDF, Parallel HDF5, and PIDX use a
suite of I/O transformations to effectively translate distributed-
application data layouts to file-level bitstreams. Two factors are
key while writing data in parallel: how many processes are
accessing a file, and how many files are being written in total.
Common strategies used by these libraries are: file per process,
single shared file, two-phase I/O, and subfiling. In file-per-
process, every process writes its data to an independent file,
whereas with shared file I/O processes, they write data to a sin-
gle shared file. It is well-known in the parallel I/O community
that writing to a single shared file or using the file-per-process
mode will lead to sub-optimal performance [7]. While file-per-
process I/O suffers from metadata overhead due to the massive
number of files produced, shared-file I/O typically suffers from
file-locking contention when every process attempts to write
at once. Similarly, allowing every process to perform its own
I/O leads to sub-optimal performance [15].

The latter two strategies, two-phase I/O and subfiling,
balance between file per process and single shared file ap-
proaches, to provide portable, scalable, and tunable I/O strate-
gies. Two-phase I/O strategies [1], [14], [16], [17] begin
by assigning a configurable number of processes to be data
aggregators. The non-aggregator processes are assigned a data
aggregator to send their data to, forming a subgroup. The pro-
cesses then send their data over the network to their assigned
aggregator, which writes a single file out after it has received
data from the processes in its subgroup. This scheme restricts
the number of processes that need to access the parallel file
system. Subfiling [18], [19] works similarly, though it does
not necessarily aggregate the data over the network into an
aggregator process before writing it out. Subfiling strategies
group processes into subgroups, then perform single shared
file writes within the subgroups, outputting a file per subgroup.
Subfiling controls the number of files created while two-
phase I/O with data aggregation controls the total number
of processes that access the parallel file system. These two
schemes provide a set of portable, scalable, and tunable I/O
strategies.

Finally, in terms of performance assessment, several tools
exist to characterize the message passing capabilities of a
system [20] [21] and assess its peak performance. A few of
them, like MADBench2 [22], assess I/O performance using
application-driven I/O loads, for example, simulating Cosmic
Microwave Background data analysis. One of the most com-
mon tools used to perform I/O benchmarks is IOR [23], which
allows defining a per-process buffer size and various settings
to perform file I/O, ultimately relying on POSIX or MPI I/O

Fig. 2: A 16× 16 simulation domain, for example, is divided
into 16 patches of 4×4 each. Each of the four processes con-
tains four patches. Each patch’s grid samples are transformed
into three resolution levels (orange, green, and blue). When
four files are written in the global hierarchy (top right), the
first file contains coarse-level data samples from all patches,
forcing expensive global communication. Each file in our
layout, which consists of four local hierarchies (bottom right),
only gathers data locally from its own patches.

APIs. This allows for experiments using file-per-process and
collective I/O patterns for a uniform data distribution among
the ranks. The ability to create uneven data distribution across
processes is not supported.

III. COMPRESSED HIERARCHICAL LAYOUT

In this section, we introduce our compressed hierarchical
layout for scientific data and discuss how it is designed to
facilitate fast parallel writes. We start with the observation
that traditional hierarchical layouts [2] tend to require I/O
libraries to gather coarse-resolution data samples across the
whole simulation domain, which incurs very expensive global
communication at write time. To make parallel I/O scalable,
we designed our data layout to be patch based. The patch-
based layout avoids the collective communication overhead of
creating the global hierarchy at write time because patches
can be written independently. As each patch encapsulates its
own hierarchy, I/O schemes can flexibly organize the patches
for optimal I/O performance without the risk of disturbing the
global hierarchy. Furthermore, the ability to tune the patch
resolution helps meet the optimal file size (I/O burst size)
requirement with more flexibility. If the patch size is fixed
to the initial process load, then there is less room to control
the I/O burst size. This is because, typically, we will have
more patches of smaller sizes (compared to the total number
of processes), that can be packed more uniformly across
aggregators targeting an optimal I/O burst size.

A. Patch-based design

A patch is typically a localized chunk of data. In particular,
the simulation grid is partitioned into patches of dimensions
px × py × pz , where each dimension is a power of two.
Each patch is transformed independently to form a hierarchy
of L resolution levels (L = log2(min(px, py, pz)) + 1).
Data samples are assigned to files in units of patches (i.e.,
samples from the same patch are always written in the same
file). The order in which samples are written within each



file is flexible. They can be stored in two ways: (i) sorted
by patch indices, then by resolution levels (coarse to fine),
or (ii) sorted by resolution levels (coarse to fine), then by
patch indices. The first scheme prioritizes random access over
progressive multiresolution access, while the second one pri-
oritizes multiresolution access over random access. px,y,z and
storage schemes are controlled by the user, with px,y,z being
a tunable parameter. Smaller px,y,z values result in a more
balanced data-load distribution during the aggregation phase,
which improves I/O performance. The patch-based layout also
explicitly facilitates efficient random access reads. For parallel
I/O, the layout itself does not enforce any policy for assigning
patches to files to give I/O libraries more opportunities for
optimization. As an example, our I/O library sorts the patches
in Morton order [24], enforces that patch indices in the same
file are contiguous in this order, and allows the user to choose
the number of files (F ). Figure 2 illustrates a 2D example of
such a layout with px = py = 4, L = 3 and F = 4; it clearly
shows that when compared to a global hierarchy approach,
our patch-based design allows I/O libraries to operate with
no collective communication overheads, resulting in more
scalable I/O.

A possible reason for concern with our patch-based scheme
is that since coarse resolution data samples are spread across
more files, a query for these samples across the whole domain
may require reading a large number of small chunks (one
from each file) instead of one big chunk from a single file
(as with the global hierarchy scheme). This process may be
very slow depending on the size of each chunk. However, it
is easy to appropriately choose reasonable values for px,y,z
and the number of files so that each I/O request is for a
sizable chunk (tens or hundreds of kilobytes). For example,
if px = py = pz = 64, L = 5, each patch contains
43 = 64 data samples at the coarsest resolution level (level-
5). If each sample is a float64 and a file contains at least
83 = 512 patches, then the coarsest level occupies a chunk of
512 × 64 × 8 = 256 KB in each file, which is large enough
for high throughput I/O.

Although not mandated by the data layout, in practice, data
is often transformed and compressed in some way before
being stored on the disk. Our I/O library, for example, per-
forms the wavelet transform followed by lossy compression
of the wavelet coefficients (Section IV-B). At write time, we
transform and compress each patch independently of one an-
other, and at read time, we decompress and inverse transform
each patch independently. Therefore, the patch dimensions
px,y,z must be chosen small enough to allow fine-grained
random access and to facilitate parallel transform and com-
pression/decompression. They must, however, be large enough
to avoid accumulating too much metadata in order to support
random access and adaptive refinement. Also, while the patch
resolution is independent of the global or the local per-process
resolution, a special case can occur when its resolution is
set to be the same as the initial per-process resolution. This
would avoid any communication cost in the patch distribution
phase (every process will have a patch), but, we will lose

the flexibility to control the optimal file-size when performing
parallel I/O. However, we have found that, in our experiments,
32 and 64 are good choices for px,y,z (323 or 643 samples
per patch). With such patch sizes, the metadata accounts for
only about 2% of the total compressed data, and there are
enough patches to distribute among processes so that they can
be transformed and compressed efficiently in parallel, resulting
in good parallel I/O performance.

B. Data access and reconstruction

In each file, we store the total number of patches it contains,
their patch indices, and offsets for all resolution levels of each
patch. We also compute for each file a bounding box of all
the patches in the file, and store these bounding boxes in a
metadata file. At read time, the user can issue a query for
data at a certain resolution level and for a certain region of
the domain (the region may also be the whole domain). Given
such a query, we can quickly intersect the queried region with
these bounding boxes to locate the files in which the possibly
relevant patches are stored. Since a bounding box for a file
may have holes (i.e., patches that are stored in another file),
we next intersect the queried region with the extents of the
patches themselves to filter out irrelevant patches. Once the
relevant patches have been identified, they are loaded from
their respective files. We know exactly where to load these
patches because their offsets are stored as metadata.

IV. PARALLEL I/O

Figure 3 illustrates our end-to-end pipeline. To create a
compressed multiresolution hierarchy, we apply the discrete
wavelet transform, then compress the wavelet coefficients for
each patch, following the approach taken by [25]. We have
also chosen the B-spline multilinear basis [26] because it is
fast to compute and offers great compression opportunities.
Each patch is a computational unit, which is independently
transformed and compressed. For efficient memory access
during these computations, it is important that each patch is
worked on by only one process: we want to avoid having a
patch shared by two or more processes that necessitate data
communication during transformation. The simulation code,
however, may distribute data in ways that result in many
shared patches – after all, the simulation in general does not
work with patches of the same dimensions as our layout.
Therefore, before wavelet transform and compression, we need
to distribute the patches so that each process contains non-
overlap patches.

Ideally, in a two-phase I/O system, the aggregation phase
can serve as a patch distribution phase as well, and subse-
quent transformation and compression are done on aggregator
processes. However, such an approach can severely limit the
parallelism of those computations, because the number of
aggregators is typically very small compared to the number
of processes. To leverage the computational power from all
processes involved in the simulation, we propose a separate
phase, called the patch-distribution phase, to distribute the
patches evenly among all processes so that the subsequent



Fig. 3: The end-to-end pipeline of our parallel-I/O library. Local per process data is partitioned across a tunable number of
patches–this step takes place in the patch distribution phase (section IV-A). We then apply wavelet transform on each of the
patches, creating local multiresolution hierarchies (section IV-B). The wavelet coefficients are then compressed with zfp to
get rid of redundancies in the data (section IV-B). Finally, the compressed patches, are buffered on few chosen aggregator
processes which writes the data (and meta data) to files (section IV-C).

transformation and compression are well load-balanced. After
(lossy) compression, we face another balancing issue, this time
for disk I/O, which arises due to non-uniform load distributions
created by uneven compression ratios across processes. This is
because different regions of the domain may be compressed
to different sizes, depending on the data being compressed
(see Figure 1 for example). The process with the most data
after compression is likely to be the last one finishing file I/O
operations, degrading the overall performance. Even without
compression, scientists often perform data filtering or feature
extraction before disk I/O to reduce the amount of data
written, which also causes this balancing issue. We tackle this
challenge by devising a layout-aware balanced aggregation
strategy. In short, our parallel I/O pipeline consists of three
distinct phases:

1) Balanced patch distribution (Section IV-A)
2) Parallel wavelet transform and compression (Sec-

tion IV-B)
3) Balanced data aggregation and file I/O (Section IV-C)

A. Balanced patch distribution

We start by distinguishing between regular-patches and
shared-patches. A regular-patch is fully contained within a
process before distribution, while a shared-patch is shared by
two or more processes (i.e,. each process holds some portion
of the patch). For example, in Figure 4, out of the 9 patches,
4 are regular-patches (ids: 0, 2, 6 and 8) and 5 are shared-
patches (ids: 1, 3, 4, 5, and 7); shared-patch id 4 is shared by
all four processes. Regular-patches are not moved during the
patch distribution phase, hence reducing data movement costs.
Shared-patches, on the other hand, may need to be moved from
their original process to a new process for balancing purposes.

With a total of M patches to be distributed across N pro-
cesses, a perfectly balanced distribution of patches is ensured
when every process gets exactly bM/Nc patches and the

remaining M mod N patches are spread-out uniformly across
all N processes. A process will therefore either hold bM/Nc
or bM/N + 1c patches, and we call this the target patch
count. For example, in Figure 4 the target patch count for
processes, blue, green, pink, and yellow are 3, 2, 2 and 2. The
regular-patches are not moved and are thus assigned to their
host process itself. The shared-patches that are spread across
processes must be assigned to a target process. We go through
all of the shared patches, assigning each one a target process.
Again, to minimize data movement, we attempt to assign a
shared-patch to one of the processes that share that patch—
we choose the process that has currently been assigned fewer
patches than its target patch count, which is either bM/Nc or
bM/N +1c. If there are multiple candidates, the process with
the smallest rank is chosen. If a target process for the shared-
patch is found this way, then at-least a chunk of the shared-
patch will be locally copied (instead of being sent across the
network), hence reducing data movement. Alternatively, if all
processes that share the shared-patch have already reached
their target patch count, we scan through all processes and
assign the patch to the first process that has not reached its
target patch count. As an example, the first shared-patch (id 1)
in Figure 4 will be assigned to the blue process, since both blue
and green processes have not met their target-patch-counts
yet, we chose the process with smaller rank (assuming rank
order: blue < green < pink < yellow). The scheme ensures a
perfectly uniform distribution of patches.

In our implementation, we divide the set of processes
sharing a patch into senders and receivers. The receiver is
the one process that the shared-patch is assigned to, and the
rest are senders. Each sender then sends the region of the
patch that it holds to the receiver. This algorithm is run on
every process, so each one knows exactly whether it is a
receiver or sender for each shared-patch and what data to
send or receive. MPI_Type_create_subarray is used to



Fig. 4: A 2D example of our patch distribution scheme. 3× 3
patches (separated by dash lines and numbered) are distributed
among four processes (distinguished by colors). Before the
distribution, some patches are shared among processes, result-
ing in many sub-patch regions. After the distribution using
our scheme, the processes have exactly 3, 2, 2, 2 patches
respectively. In contrast, the greedy scheme distributes the
patches unevenly. Note that boundary patches (have smaller
dimensions) may also be padded to regular patches.

define these sub-patch regions that are sent and received over
the network, and MPI’s non-blocking point to point API is
used for data transfer. In Figure 4, we give a small example
where we number the patches and color the processes to help
to visualize them. After all the sub-patch regions are sent
and received, every process ends up with target-patch count
patches, each of which is stored in a separate contiguous
memory block, ready to be transformed.

Perhaps a more straightforward method for choosing the
receiver for a shared-patch is to pick the one with the largest
sub-patch region among the processes that share the patch
(i.e., the process that originally contains the most data from
the patch). Patch distribution using this greedy scheme has
been used, for example in [2], albeit not for balancing the data
transformation per patch, but to minimize interleaving of data
samples among processes in aggregation buffers. However,
in Figure 4 we show that the greedy scheme leads to a very
imbalanced patch distribution. In Section V we also show
through experiments that in practice, the greedy scheme does
indeed result in significantly longer computation time.

B. Wavelet transform and compression

Following patch distribution, the wavelet transform is ap-
plied to each patch independently. The transform updates and
divides the data samples in each patch into a set of resolution
levels, each of which captures information at a specific scale.
Because the patches are processed independently, once the
patch distribution is completed, there is no need to communi-
cate among processes, such as exchanging boundary data. This
deliberate design is intended to extract the most parallelism
from the machine for the transformation step. In all our studies,
we keep the patch resolution to be powers of two, ensuring that
wavelet coefficient at patch boundaries are computed correctly.

Linear and higher-order wavelets are not only useful for
low-pass filtering but also for lossy compression. One way to
compress is to treat the fine-scale wavelet coefficients as being
0 and do not store them. More sophisticated wavelet encoding

schemes such as SPIHT and JPEG2000 exist [27], [28], but
they tend to be slow. For performance reasons, we compress
wavelet coefficients at each resolution level independently
using ZFP [5], a fast compressor for floating-point arrays. Prior
work [25] has shown that ZFP in fixed accuracy mode can
be used very efficiently as a wavelet compressor. To allow
data retrieval of individual resolution levels, we compress
each resolution level independently. The compression accuracy
(or absolute error tolerance) is a parameter controlled by the
user. Because patches can be processed independently of one
another, it is possible for I/O libraries to achieve very high
degrees of parallelism when performing data transformation,
namely, wavelet transform and compression. In Section V, we
provide detailed timings of this step with our implementation.

C. Layout-aware balanced data aggregation

The next step is to write the compressed data to disk, in the
file layout described in Section III. Lossy data compression
may create load imbalance across processes, as different
regions of the spatial domains are compressed to different
sizes. This can be attributed to the nature of the dataset in
question, as some processes have regions with more coherent
data, which gets compressed more than processes with regions
of higher randomness. This imbalance in load percolates to the
I/O layer, causing sub-optimal performance. The problem is
more prominent with time-varying simulation datasets, where
the degree of imbalance changes over time, necessitating an
adaptive parallel I/O system. Figure 1 depicts this imbalance
for real-world scientific datasets, demonstrating that most of
the datasets show significant variation in load across processes.

We have designed our data layout in a manner that in-
herently supports writing to a tunable number of files (F ).
Although MPI has support for collective I/O that internally
does data aggregation, it explicitly does not support sub-filing.
Sub-filing allows one to use collective access within each
communicator group and also write data to a hierarchy of files.
This scheme of doing parallel I/O is popular and is widely
used by I/O libraries like parallel HDF5 [19]. However, this
method does not directly translate well for non-uniform data
distributions, as it leads to fewer aggregators writing more data
than others, causing sub-optimal performance. To extract the
maximum available bandwidth from the hardware, we must
have a uniform distribution of I/O load across aggregators.

To deal with load-balancing challenges, we have designed
a customized two-phase I/O strategy, that facilitates both sub-
filing and ensures that aggregators have similar I/O loads to
write. Our aggregation phase takes into account the global
view of data distribution across processes while assigning the
size and extent of each aggregator. Following are the steps
in the aggregation phase: 1) aggregator selection, 2) patch
assignment, and 3) patch transfer.

1) Aggregator selection: A key step in tailoring aggregation
is to select an appropriate number of aggregators. We allow
only one aggregator to write a file, so the aggregator count is
equal to the total number of files written. Given that we have
designed our data layout to support a flexible number of files,



(a) Balanced aggregation

(b) Non-balanced aggregation

Fig. 5: Our balanced aggregation scheme vs. the non-balanced
scheme. Both approaches yield the same number of files
(same number of aggregators). However, balanced aggregation
generates files of similar size as opposed to the non-balanced
scheme where files have varying sizes but the same number
of patches. (A filled black circle represents 1M).

we keep that as a tunable parameter that is set by the user.
The only limitation is that the total number of files outputted
must be less than or equal to the total number of processes. In
practice, the number of files generated should be a fraction of
the total number of processes. For example, in our evaluation
section, we vary the number of files from nprocs (file-per-
process) to nprocs/16. This aggregator count and file count
configuration is in line with sub-filing, and also avoids any
file locking contention which can happen with processes that
make unaligned accesses to a file. To extract the maximum
I/O bandwidth, we place the aggregators uniformly across the
rank space. In Section V, we demonstrate the impact of the
number of aggregators/files.

2) Patch assignment.: To ensure a balanced I/O phase, we
need to assign patches to aggregators so that every aggregator
manages roughly the same volume of data. This step would be
trivial if processes had similar-sized data loads. However, as
our data patches are all of different sizes, a file must contain a
different number of patches to achieve a balanced amount of
data per-file. To attain similar-sized files, we allow aggregators
to receive data from a varying number of processes. We
keep the smallest unit of data exchange to be a patch (i.e.
a process can send its patches to multiple aggregators), and
in the extreme case, it can transmit to as many aggregators as
it has patches. This configuration facilitates creating a near-
uniform data load across the aggregators. Additionally, it also
provides extra flexibility in controlling the file-level layout.
For example, we write out patches in Morton order [24] to
preserve the spatial locality of patches in the file.

We begin by collecting patch sizes across processes using
MPI’s MPI_Allgather. This allows processes to construct

Dataset
Name Resolution Type

Size after
compression

(bytes)
PSNR

Synthetic data 1600 x 1600 x 1600 float 1540263880 37.7
S3D flame [3] 2025 x 1600 x 400 double 786616672 35.6

Turbulence data [4] 4096 x 4096 x 4096 float 38989451056 33.9

TABLE I: Datasets used in our experiments

a consistent global view of all patches, which is used to
independently identify the aggregators they need to send their
data to. As we intend to write out patches to files in Morton
order [24], we first sort all patches in Morton order, then
scan over this sorted list, allocating patches to aggregator
processes in a balanced manner. We keep a running total of
compressed patch sizes and progress to the next aggregator
process whenever this value exceeds a running average (the
remaining data divided by the number of remaining aggrega-
tors). When the running sum runs over our target aggregator
size, we assign the patches in the running sum to the current
aggregator and reset our running sum to 0, progressing to
the next aggregator. This approach yields a small dip in the
per-aggregator data at the very end as this average declines.
This does not create significant balancing problems but may
be remediated by undershooting the average at first, or by
alternating between going over the average and staying under
the average at each aggregator. We plan to experiment further
with such improvements in the future.

3) Patch transfer: The patch assignment step is executed
independently by every process, at the end of which every
patch is assigned to a target aggregator. Target aggregators use
the same step (patch assignment) to identify the patches and,
correspondingly, the ranks they are going to receive the data
from. This allows the aggregator processes to correctly allocate
buffers to accommodate the receiving patches. Processes then
transfer their patches to the aggregators using MPI’s non-
blocking point-to-point communication.

We show an example of our balanced aggregation scheme
in Figure 5(a). It can be seen that our scheme can support
both sub-filing and also perform uniform-sized I/O writes. We
compare our approach’s performance to that of a non-balanced
aggregation scheme (Figure 5(b)), which generates the same
number of files as the balanced aggregation scheme but writes
to non-uniform-sized files. In the non-balanced aggregated
scheme, every aggregator receives the same number of patches,
and since the patches have varying data loads, the aggregators
end up with a non-uniform load distribution.

V. EVALUATION

We begin by evaluating the efficacy of our balanced patch
distribution and aggregation phases. We have used a mix of
synthetic and real simulation datasets (see Table I) for our
experiments. All our experiments are performed on the Theta
Supercomputer [29] at the Argonne Leadership Computing
Facility (ALCF). Theta is a Cray machine with a peak per-
formance of 11.69 petaflops, 281,088 compute cores, 843.264
TiB of DDR4 RAM, 70.272 TiB of MCDRAM, and 10 PiB



(a) With out scheme, patches are evenly dis-
tributed across the process ranks

(b) The balanced patch distribution results in
a significant speedup factor

(c) Our distribution scheme achieves near-
perfect strong scaling

Fig. 6: Compared to the greedy patch distribution scheme, ours reduces the total combined time of the distribution, wavelet
transform, and compression steps by more than half. It also exhibits near-perfect strong scaling behavior. (4, 096 ranks)

(a) Bandwidth (whole pipeline) for varying
aggregator counts. (FPP: File-Per-Process)

(b) Size of I/O load for all 4096-aggregators
run.

(c) Bandwidth (whole pipeline) for all 4096-
aggregators run.

Fig. 7: Results showing the impact of balanced data aggregation for writing turbulence [4] dataset. (32, 768 ranks)

(a) Bandwidth (whole pipeline) for varying
aggregator counts. (FPP: File-Per-Process)

(b) Size of I/O load for all 512-aggregators
run.

(c) Bandwidth (whole pipeline) for all 512-
aggregators run.

Fig. 8: Results showing the impact of balanced data aggregation for writing S3D flame [3] dataset. (4, 096 ranks)

of online disk storage. The supercomputer has a Dragonfly
network topology and a Lustre filesystem.

A. Patch distribution phase

In our I/O pipeline (Figure 3), patch distribution happens
first, followed by a wavelet-transformation and compression
(for each patch). Here we compare our balanced patch dis-
tribution scheme with the greedy scheme discussed in Sec-
tion IV-A. Patch distribution using the greedy scheme has been
used extensively in the past, for example, in [2]. In addition to
measuring the total time taken to perform patch redistribution,
we also time the wavelet-transformation and compression steps
to measure the real impact of the patch distribution phase. We
use a grid with a resolution 16003 and run a strong-scaling
experiment with a total number of processes ranging from 512
to 4,096. The patch dimensions are 643, resulting in a total of

16003/643 = 15,625 patches. We repeated each experiment
10 times, and plotted the medians in Figure 6.

At 4,096 ranks, our scheme distributes the patches more
uniformly (Figure 6a). With the greedy scheme, approximately
a quarter of the processes hold eight patches each while
a significant number of processes hold only one patch, as
opposed to our scheme, where every process holds either three
or four patches. The near perfect-balance not only makes the
data distribution phase fast, but it also directly impacts the fol-
lowing wavelet-transform and compression phases (Figure 6b).
With the greedy scheme, processes with patches must perform
more computation overall, causing performance degradation.
Figure 6c depicts the results for strong scaling. Our approach
takes 1.11s at 512 processes and 0.15s at 4,096 processes,
demonstrating near-perfect scaling efficiency, while the greedy
approach does not.



B. Load-balanced data aggregation

In this section, we demonstrate the efficacy of the load-
balanced aggregation scheme. We compare our method with a
non-balanced aggregation approach in which each aggregator
is given an equal number of patches. Recall that our balanced
aggregation scheme ensures that aggregators have similar I/O
loads and so, as a result, files have similar sizes; this is not
true for non-balanced aggregation schemes.

We evaluate our scheme on the S3D flame and Turbulence
dataset listed in Table 1. The experiments are performed at
4,096 and 32,768 processes (n), respectively. For the S3D
flame experiments, we varied the total number of aggregators
(= files) from n (file-per-process) to n/8. For the Turbulence
experiments, we varied the total number of aggregators (=
files) from n (file-per-process) to n/64. We repeated each
experiment 10 times and plotted the bandwidth of the median
in Figure 7(a) and 8(a). For the 40963-resolution turbulence
dataset, our balanced aggregation approach yields a peak
throughput of 58.08 GiB/second, while the non-balanced
approach yields a peak throughput of 51.11 GiB/second.
File-per-process I/O mode yields a throughput of 33.01
GiB/second. These figures represent a 12% improvement in
performance over the non-balanced approach and a 43.16%
improvement over file-per-process I/O. For the S3D flame
dataset, we observe a maximum bandwidth of 9.97 GiB/second
with the balanced aggregation, and 7.5 GiB/second with the
non-balanced aggregation, while file-per-process I/O yields a
throughput of 5.14 GiB/second. These correspond to a 24.77%
improvement in performance over non-balanced aggregation
and around 2× improvement over file-per-process I/O. The
file-per-process I/O approach can be considered a baseline
for comparison with no communication overhead. This com-
parison demonstrates that although our optimizations have
an extra communication phase, they ultimately improve the
overall performance.

The improvement (%) in the flame dataset is more than
in the turbulence dataset. Figure 7(b-c) depicts the data load
and bandwidth of all 4,096-aggregators runs of the turbulence
dataset, and Figure 8(b-c) depicts a similar metric for the 256-
aggregators run of the S3D flame dataset. From these figures,
we observe that the degree of non-uniformity of data distribu-
tion varies between the two datasets. With the flame dataset,
the non-balanced scheme results in groups of aggregators
significantly much more data than the others. In the turbulence
data, however, the degree of imbalance in data distribution
across aggregators is more moderate, even using the non-
balanced scheme. This difference in load distribution across
aggregators for the two datasets can be directly attributed to the
initial load distribution across processes (as seen in Figure 1).
Clearly, the S3D flame dataset has more variance than the
turbulence dataset that percolates to the aggregation layer. This
inherent difference in the degree of non-uniformity between
the two datasets leads to the S3D data set benefiting more
from our balanced aggregation strategy than the turbulence
dataset (which has less inherent imbalance). Furthermore, the

Fig. 9: Strong scaling results for writing the S3D dataset
with both balanced and non-balanced aggregation schemes.
Balanced aggregation scheme consistently outperforms the
other scheme at all process counts.

differences between the two aggregation schemes becomes
less discernible for larger aggregator counts, mainly because
each aggregator gathers a smaller number of patches. This
trend is even more clear for datasets with near-uniform load
distribution, such as turbulence. Additionally, the patch assign-
ment overhead of the balanced aggregation scheme is slightly
higher than that of the non-balanced one because it must
calculate the running average size (Section IV-C2). As a result,
in Figure 7(a), the non-balanced aggregation scheme slightly
outperforms the balanced one.

We also observe that our balanced scheme achieves the best
performance at aggregator counts of 8,192 and 512 for the
two datasets. Finding the optimal number of aggregators is
a difficult problem, as it often depends on the scale of the
experiment, and in our case, the load distribution pattern.
However, we recognize that the Lustre filesystem is more
suited to writing data in file-per-process mode and is adept
at handling a large number of files. This is further seen in our
experiments in this section and in the following section. For
our experiments, we have therefore experimented with smaller
aggregation factors, leaning more towards the file-per-process
I/O spectrum. We believe that our system is flexible in its
design, and can be effectively tuned for different filesystems.

We also perform strong scaling experiments for the S3D
dataset and plot the results in Figure 9. Here, we also see our
load-balanced aggregation scheme consistently outperform the
imbalanced scheme at all process counts.

C. Micro-benchmarks

Traditional I/O benchmarks such as IOR [23] use static,
uniform, data distributions replicated across processes to as-
sess system I/O bandwidth. Generating a realistic non-uniform
data distribution at scale would require a real simulation to
be run (computation overhead), or would need an extensional
database (storage overhead). In this work, we introduce a
simple micro-benchmark that can mimic the non-uniform
data distribution pattern (across processes) of a real scientific
application at any arbitrary scale, without any computation
or storage overhead. The main idea is to extrapolate the per-



(a) S3D flame dataset (P = 512).

(b) Generated data (P = 4096)

Fig. 10: Micro-benchmark load distributions. The generated
data preserves the load distribution patterns in the original
data, representing a good candidate for benchmarking at scale.

process data size instead of the actual data. We first consider
a scientific dataset and collect the data size that each rank
holds in the original 3D grid domain at a small scale (say, at
process count Px×Py×Pz). This data size is then stored in a
3D size-grid of dimensions Px, Py , Pz . With this information,
we launch our micro-benchmark at a larger scale (i.e., using a
larger number of processes) and assign a new data size to each
rank — computed on the fly using trilinear interpolation on
the original 3D size-grid. At this stage, each rank allocates a
buffer with the assigned new data size and runs an I/O pipeline.
This approach is inspired by common practices in simulation
design, where scientists first prototype small-scale simulation
runs using a coarse resolution grid and then increase the
resolution of each patch to perform large-scale simulations.

In Figure 10, we can see how the load distribution of the
S3D flame dataset (after parallel wavelet transform and com-
pression) using 512 ranks is very similar to our generated load
distribution using 4,096 ranks. These plots demonstrate how
our micro-benchmark technique preserves the load-distribution
patterns (in a 3D domain) of a scientific dataset at scale.

Using our micro-benchmark, we can perform weak-scaling
experiments to assess and compare our load-balanced aggre-
gation approach against traditional file I/O. In particular, we
ran our experiments at scale with five I/O pipelines: (i) file
per process I/O; (ii) MPI collective (parallel write to a single
file); (iii) MPI Group Collective (parallel write to a target
number of files); (iv) non-balanced aggregation; (v) balanced

Fig. 11: Weak scaling results of different I/O pipelines,
where the per-process workload is created using our micro-
benchmark following the distribution of S3D data (Figure 10).
The total size of the dataset starts at 1,024 ranks with 9.5GiB.

aggregation (our approach). We configure schemes (iii), (iv)
and (v) to generate nprocs/8 files. In this set of micro-
benchmarks, we allocate data buffers on each rank to mimic a
real scientific simulation load. For weak-scaling experiments,
we use our I/O simulator to simulate an S3D simulation
with 16 variables, resulting in a non-uniform load distribution
across processes, as shown in Figure 10(a). We vary the total
number of processes from 1, 024 to 16, 384, while the total I/O
load varies from 9.5 GiB to 153 GiB per timestep. We repeated
each experiment 10 times and plotted the median in Figure 11.

We observe that our balanced aggregation scheme out-
performs all other methods at 16, 384 cores. We report a
throughput of 72.75 GiB/second at 16, 384 processes, com-
pared to 59.65 GiB/second for file-per-process I/O. These
results demonstrate that our balanced aggregation strategy
outperforms other schemes at scale. In particular, the non-
balanced aggregation and MPI Group Collective I/O exper-
iments both perform a non-balanced two-phase I/O pipeline
producing the same number of files equal to nprocs/8. In the
non-balanced aggregation pipeline, the number of aggregators
is equal to the number of files, while the MPI Group Collective
manages the aggregators using an internal heuristic. From the
experimental result, we can see that the two approaches have
similar performance trends at scale. Unsurprisingly, the MPI
Collective I/O presents the worst performance at scale due to
the global communication overhead in the data aggregation
phase and also by having a large number of processes writing
to the same file. Finally, file-per-process I/O maintains overall
good performance but starts losing efficiency at scale due
to the increasingly higher number of files. That’s because
the Lustre file system can handle large numbers of files but
only achieves saturating performance at very high process
counts. As a result, aggregation strategies are expected to
be ineffective at lower process counts. It is important to
note that the tunability of the proposed I/O library permits
configuration, so it may perform file-per-process I/O and
achieve the best performance at a lower scale. Furthermore,
if we consider post-process analysis and visualization tasks
(typically run with a smaller set of computational resources),



using a large number of files would probably reduce the I/O
read performance.

VI. CONCLUSION

We have presented a compressed hierarchical data layout
and efficient parallel I/O scheme suitable for a variety of HPC
applications. Hierarchical formats allow fast access to data at
different scales, making it favorable for interactive analysis
tasks. Writing traditional multi-resolution layouts that create
global hierarchies is challenging as it involves expensive syn-
chronization during the aggregation phase. Our layout solves
this problem by creating a grid of local hierarchies, called
patches, that can be processed and written in parallel without
any global synchronization. We identify two load-balancing
challenges associated with writing our data layout in parallel,
one for per-patch data transformation and compression, and the
other for parallel writing of compressed patches. We present
a technique to facilitate balanced patch distribution across
processes, and a novel aggregation strategy that incorporates
sub-filing and creates uniform I/O loads across aggregators.
We report an 8× improvement in performance over the default
MPI collective I/O at scale. Our proposed balanced aggrega-
tion technique can also be applied to other HPC applications
that produce non-uniform or sparse data loads. The presented
techniques are generic and so can also be integrated with
existing I/O libraries such as PnetCDF, parallel HDF5 and
ADIOS.
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